Понятия со словосочетанием «критическая точка»
Связанные понятия
Параметр порядка — термодинамическая величина, характеризующая дальний порядок в среде, возникающий в результате спонтанного нарушения симметрии при фазовом переходе. Равновесный параметр порядка равен нулю в неупорядоченной фазе и отличен от нуля в упорядоченной.
Изолированная система (замкнутая система) — термодинамическая система, которая не обменивается с окружающей средой ни веществом, ни энергией. В термодинамике постулируется (как результат обобщения опыта), что изолированная система постепенно приходит в состояние термодинамического равновесия, из которого самопроизвольно выйти не может (нулевое начало термодинамики).
Третье начало термодинамики (теорема Нернста, тепловая теорема Нернста) — физический принцип, определяющий поведение энтропии при приближении температуры к абсолютному нулю. Является одним из постулатов термодинамики, принимаемым на основе обобщения значительного количества экспериментальных данных по термодинамике гальванических элементов. Теорема сформулирована Вальтером Нернстом в 1906 году. Современная формулировка теоремы принадлежит Максу Планку.
В математике особой точкой векторного поля называется точка, в которой векторное поле равно нулю. Особая точка векторного поля является положением равновесия или точкой покоя динамической системы, определяемой данным векторным полем: фазовая траектория с началом в особой точке состоит в точности из этой особой точки, а соответствующая ей интегральная кривая представляет собой прямую, параллельную оси времени.
Подробнее: Особая точка (дифференциальные уравнения)
Полунепреры́вность в математическом анализе — это свойство функции более слабое, чем непрерывность. Функция полунепрерывна снизу в точке, если значения функции в близких точках не сильно меньше значения функции в ней. Функция полунепрерывна сверху в точке, если значения функции в близких точках не сильно превышают значения функции в ней.
Подробнее: Полунепрерывная функция
Теория бифуркаций динамических систем — это теория, которая изучает изменения качественной картины разбиения фазового пространства в зависимости от изменения параметра (или нескольких параметров).
Фа́зовая диагра́мма воды — графическое отображение равновесного состояния фаз воды (жидкости, водяного пара и различных модификаций льда). Строится в системе координат температура—давление.
Теорема Фока — Крылова утверждает, что закон распада квазистационарного состояния полностью определяется энергетическим спектром начального состояния.
Неустойчивость Рэлея — Тейлора (названа в честь лорда Рэлея и Дж. И. Тейлора) — самопроизвольное нарастание возмущений давления, плотности и скорости в газообразных и жидких средах с неоднородной плотностью, находящихся в гравитационном поле (Рэлей, 1900 г.) либо движущихся с ускорением (Тейлор, 1950 г.).
Теорема Пуанкаре — Бендиксона — теорема в теории динамических систем, описывающая возможные типы предельного поведения траектории векторного поля на плоскости или на сфере. Теорема утверждает, что предельное поведение траекторий в этом случае регулярно, и не может быть хаотическим (невозможно даже наличие всюду плотных орбит).
Экспоненциальный рост — возрастание величины, когда скорость роста пропорциональна значению самой величины. Подчиняется экспоненциальному закону. Экспоненциальный рост противопоставляется более медленным (на достаточно длинном промежутке времени) линейной или степенной зависимостям. В случае дискретной области определения с равными интервалами его ещё называют геометрическим ростом или геометрическим распадом (значения функции образуют геометрическую прогрессию). Экспоненциальная модель роста также...
В теории вероятностей случайная величина имеет дискретное равномерное распределение, если она принимает конечное число значений с равными вероятностями.
Подробнее: Дискретное равномерное распределение
Экстре́мум (лат. extremum — крайний) в математике — максимальное или минимальное значение функции на заданном множестве. Точка, в которой достигается экстремум, называется точкой экстремума. Соответственно, если достигается минимум — точка экстремума называется точкой минимума, а если максимум — точкой максимума. В математическом анализе выделяют также понятие локальный экстремум (соответственно минимум или максимум).
Критическое давление — давление вещества (или смеси веществ) в его критическом состоянии. При давлении ниже критического давления система может распадаться на две равновесные фазы — жидкость и пар. При критическом давлении теряется физическое различие между жидкостью и паром, вещество переходит в однофазное состояние. Поэтому критическое давление можно определить ещё как предельное (наивысшее) давление насыщенного пара в условиях сосуществования жидкой фазы и пара. Критическое давление представляет...
Теорема о топологической цензуре в общей теории относительности утверждает, что в отсутствие экзотической материи нетривиальная топология пространства-времени не может быть обнаружена внешним наблюдателем, так как любые такие области коллапсируют настолько быстро, что свет не успевает их пересечь. Более точная формулировка утверждает, что в глобально гиперболическом и асимптотически плоском пространстве-времени, где выполняются световые энергетические условия, любая причинная кривая от светоподобной...
Подробнее: Топологическая цензура
Абсолютная неустойчивость — вид неустойчивости, при котором малое начальное возмущение в любой точке пространства неограниченно нарастает с течением времени. Это нарастание отличает абсолютную неустойчивость от конвективной неустойчивости, при которой возмущение из данной точки пространства перемещается в каком-либо направлении, а в данной точке с течением времени стремится к нулю. Абсолютная неустойчивость имеет место в системе с распределёнными параметрами (плазме, жидкости или твёрдом теле).
Теорема Хольмгрена — теорема о единственности решения задачи Коши для дифференциального уравнения с частными производными в случае аналитичности коэффициентов дифференциального оператора.
Опалесце́нция — оптическое явление резкого усиления рассеяния света чистыми жидкостями и газами при достижении критической точки, а также растворами в критических точках смешения. Причиной является резкое возрастание сжимаемости вещества, сопровождаемое усилением флуктуаций плотности (в том числе микрочастиц в растворах), на которых и происходит рассеяние света. Это явление также известно, как критическая опалесценция.
Фа́зовый перехо́д (фазовое превращение) в термодинамике — переход вещества из одной термодинамической фазы в другую при изменении внешних условий. С точки зрения движения системы по фазовой диаграмме при изменении её интенсивных параметров (температуры, давления и т. п.), фазовый переход происходит, когда система пересекает линию, разделяющую две фазы. Поскольку разные термодинамические фазы описываются различными уравнениями состояния, всегда можно найти величину, которая скачкообразно меняется...
Во многих случаях для предсказания поведения реального газа допустимо использовать модель идеального газа. При работе с данной моделью широко применяются термодинамические потенциалы, которые в данном частном случае приобретают более простой для расчётов вид.
Подробнее: Термодинамические потенциалы идеального газа
В теории динамических систем, энтропия динамической системы — число, выражающее степень хаотичности её траекторий. Различают метрическую энтропию, описывающую хаотичность динамики в системе с инвариантной мерой для случайного выбора начального условия по этой мере, и топологическую энтропию, описывающую хаотичность динамики без предположения о законе выбора начальной точки.
Касательный вектор — элемент касательного пространства, например элемент касательной прямой к кривой, касательной плоскости к поверхности так далее.
Равнове́сие фаз в термодинамике — состояние, при котором фазы в термодинамической системе находятся в состоянии теплового, механического и химического равновесия.
Теоремы Томсона и Тета ― формулируют условия, необходимые для того, чтобы можно было стабилизировать гироскопическими силами неустойчивую потенциальную систему. Были доказаны в 1879 г.. Пользуясь теоремой Томсона и Тета, можно исследовать...
Фазовые переходы второго рода — фазовые переходы, при которых вторые производные термодинамических потенциалов по давлению и температуре изменяются скачкообразно, тогда как их первые производные изменяются постепенно. Отсюда следует, в частности, что энергия и объём вещества при фазовом переходе второго рода не изменяются, но изменяются его теплоёмкость, сжимаемость, различные восприимчивости и т. д.
Предельное множество — математическое понятие, означающее множество состояний, которое достигает математический объект, зависящий от времени (например, динамическая система), через бесконечный интервал времени. Другими словами, это множество состояний, к которым объект неограниченно приближается при неограниченном возрастании (или убывании) времени.
Абсолю́тный нуль температу́ры (реже — абсолютный ноль температуры) — минимальный предел температуры, которую может иметь физическое тело во Вселенной. Абсолютный нуль служит началом отсчёта абсолютной температурной шкалы, например, шкалы Кельвина. В 1954 году X Генеральная конференция по мерам и весам установила термодинамическую температурную шкалу с одной реперной точкой — тройной точкой воды, температура которой принята 273,16 К (точно), что соответствует 0,01 °C, так что по шкале Цельсия абсолютному...
Теплота́ фа́зового перехо́да — количество теплоты, которое необходимо сообщить веществу (или отвести от него) при равновесном изобарно-изотермическом переходе вещества из одной фазы в другую (фазовом переходе I рода — кипении, плавлении, кристаллизации, полиморфном превращении и т. п.).
Несжимаемая жидкость — математическая модель сплошной среды, плотность которой сохраняется при изменении давления.
Уда́рная адиабата, или адиаба́та Гюгонио́, адиабата Рáнкина — Гюгонио́ — математическое соотношение, связывающее термодинамические величины до ударной волны и после.
Обратимый процесс — равновесный термодинамический процесс, который может проходить как в прямом, так и в обратном направлении, проходя через одинаковые промежуточные состояния, причем система возвращается в исходное состояние без затрат энергии, и в окружающей среде не остается макроскопических изменений. Количественным критерием обратимости/необратимости процесса служит возникновение энтропии — эта величина равна нулю при отсутствии необратимых процессов в термодинамической системе и положительна...
Параболические уравнения — класс дифференциальных уравнений в частных производных. Один из видов уравнений, описывающих нестационарные процессы.
Подробнее: Параболическое уравнение
Термодинами́ческая фу́нкция состоя́ния — в термодинамике некая функция, зависящая от нескольких независимых параметров, которые однозначно определяют состояние термодинамической системы. Значение термодинамической функции состояния зависит только от состояния термодинамической системы и не зависит от того, как система пришла в это состояние. Частным случаем функций состояний являются термодинамические потенциалы.
Коэффицие́нт эксце́сса (коэффициент островершинности) в теории вероятностей — мера остроты пика распределения случайной величины.
Теорема об огибающей (англ. envelope theorem) — результат о дифференцируемости целевой функции в оптимизационных задачах с параметром. Теорема гласит, что при варьировании значения параметра, изменение целевой функции (в определённом смысле) не обусловлено изменением оптимума. Теорема важна для сравнительной статики в оптимизационных моделях.
Коэффицие́нт сдви́га — это параметр вероятностного распределения, имеющий специальный вид. Физически конкретное значение данного параметра может быть связано с выбором точки отсчёта шкалы измерения.
Преде́льная то́чка множества в общей топологии — это такая точка, любая проколотая окрестность которой пересекается с этим множеством.
Необратимым называется
процесс, который нельзя провести в противоположном направлении через все те же самые промежуточные состояния. Все реальные процессы необратимы. Примеры необратимых процессов: диффузия, термодиффузия, теплопроводность, вязкое течение и др. Переход кинетической энергии макроскопического движения через трение в теплоту, то есть во внутреннюю энергию системы, является необратимым процессом. Законы необратимых процессов могут быть обоснованы с помощью методов электрокинетической...
Предельный цикл — это один из возможных вариантов стационарного состояния системы в теории динамических систем и дифференциальных уравнений; предельным циклом векторного поля на фазовой плоскости или, более обобщённо, на каком-либо двумерном многообразии называется замкнутая (периодическая) траектория этого векторного поля, в окрестности которой нет других периодических траекторий. Эквивалентным является утверждение, что всякая достаточно близкая к предельному циклу траектория стремится к нему либо...
Стационарное состояние — состояние термодинамической системы, при котором значения термодинамических величин — температуры, давления, химического потенциала компонента смеси, массовой скорости — во всех частях системы остаются неизменными во времени. Зависимость от времени хотя бы одной термодинамические величины служит признаком нестационарности состояния. Стационарное состояние может быть как равновесным, так и неравновесными. Последнее реализуются лишь тогда, когда между термодинамической системой...
Грань хаоса — критическая точка системы, в которой незначительное изменение может либо вызвать хаотическое поведение системы, либо замкнуть систему в статическом состоянии. Эта точка аналогична фазовому переходу в термодинамике. В этой точке сложность (количество информации, требуемое для описания системы) максимальна.
Энтропия Вселенной — величина, характеризующая степень неупорядоченности и тепловое состояние Вселенной.
Время распада метастабильного состояния - это физическая величина определяемая временем жизни метастабильного состояния. Также часто обозначается как время первого достижения.
Главным образом, интерес к вопросу распространения волн в случайно-неоднородных средах (какой является, например, атмосфера) можно объяснить бурным развитием спутниковых технологий. В этом случае становится важной задача расчета характеристик (например, амплитуды) волны прошедшей через среду и установления их связей с параметром неоднородности среды. Важную роль здесь и играет функция Грина для случайно-неоднородной среды, зная которую можно определить эти характеристики. Рассматривается прохождение...
Подробнее: Функция Грина для случайно-неоднородной среды
Уравнение диффузии представляет собой частный вид дифференциального уравнения в частных производных. Бывает нестационарным и стационарным.
Центра́льное многообра́зие особой точки автономного обыкновенного дифференциального уравнения — инвариантное многообразие в фазовом пространстве, проходящее через особую точку и касающееся инвариантного центрального подпространства линеаризации дифференциального уравнения. Важный объект изучения теории дифференциальных уравнений и динамических систем. В некотором смысле, вся нетривиальная динамика системы в окрестности особой точки сосредоточена на центральном многообразии.
Ра́зностное уравне́ние — уравнение, связывающее значение некоторой неизвестной функции в любой точке с её значением в одной или нескольких точках, отстоящих от данной на определенный интервал.